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Speculation that the fine-structure constant � varies in spacetime has a long history. We derive, in 4-D

general relativity and in isotropic coordinates, the solution for a charged spherical black hole according to

the framework for dynamical � J. D. Bekenstein, Phys. Rev. D 25, 1527 (1982).. This solution coincides

with a previously known one-parameter extension of the dilatonic black hole family. Among the notable

properties of varying-� charged black holes are adherence to a ‘‘no hair’’ principle, the absence of the

inner (Cauchy) horizon of the Reissner-Nordström black holes, the nonexistence of precisely extremal

black holes, and the appearance of naked singularities in an analytic extension of the relevant metric. The

exteriors of almost extremal electrically (magnetically) charged black holes have simple structures which

makes their influence on applied magnetic (electric) fields transparent. We rederive the thermodynamic

functions of the modified black holes; the otherwise difficult calculation of the electric potential is done by

a shortcut. We confirm that variability of � in the wake of expansion of the universe does not threaten the

generalized second law.
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I. INTRODUCTION

The issue of temporal variability of the fine-structure
constant �, first considered theoretically by Jordan [1,2],
Teller [3], Gamow [4], Dicke [5], and Stanyukovich [6],
has assumed added urgency in view of controversial claims
of cosmological variability in the fine-structure multiplets
in quasar spectra [7] (for reviews of the issue see
Refs. [2,8]). Jordan and Dicke emphasized that in a cova-
riant theory of variable �, temporal variability must be
accompanied by spatial variability. In the model theory
exhibited by Dicke—really the first theory with just �
varying—this spatial variation seems to clash with the
equivalence principle, an issue to which we shall return.

Dicke’s model for �-variability determines the full �
field rather than just its relative variation in spacetime—the
theory’s action is not invariant under rescaling of the
relevant field by a constant factor. However, a theory of
variability of a coupling constant, like the fundamental
charge, should not determine its overall scale, since the
later has to do with the system of global units employed.
Put another way, a theory of a varying electric charge can
be rewritten as a theory with a fixed charge but with
varying electric permittivity of the vacuum [5,9]. Again,
such theory should not fix the overall scale of the permit-
tivity, which depends on the units adopted for the electric
field and displacement.

A framework that determines the variation of �, but not
its overall scale, was proposed by one of us some years ago
[9,10], and explored exhaustively by Magueijo, Barrow,
and Sandvik among others [11]. It can be written as a
theory of varying charge [9], or as one of varying vacuum

permittivity [10]. This framework assumes that for con-
stant � electromagnetism reduces to Maxwell’s with mini-
mal coupling to charged matter, that � dynamics comes
from an action which, like the Maxwellian action, is coor-
dinate and gauge invariant, that the theory is classically
causal and respects time reversal invariance, that any
length scale in the theory is no smaller than Planck’s length

LP ¼ ð@G=c3Þ1=2 � 1:616� 10�33 cm, and that gravita-
tion is governed by the Einstein-Hilbert action.
We shall describe the framework in the language of a

varying vacuum permittivity [10,11]. This last is supposed
to be represented by e�2c where c is a real scalar field.
The electromagnetic field tensor F�� is supposed to be

derivable from a 4-potential. Thus

�F��
;� ¼ 0; (1)

where the dual is defined in terms of the Levi-Civitta tensor
by �F�� ¼ 1

2 �
����F��. The dynamics of c and F�� are

governed by the combined action

S ¼ � 1

16�

Z �
e�2cF��F

�� þ 2

�2
c ;�c ;

�

�
ð�gÞ1=2d4x;

(2)

which goes over to Maxwell’s in the limit c ! const, as

required. Here � � lð4�@cÞ�1=2 with l a length parameter
of the theory. Note that a shift c ! c þ const merely
‘‘renormalizes’’ the electromagnetic part of S; it can thus
be construed as consequence of a change of the electro-
magnetic units. This accords with the characterization of
the framework as one that does not determine the overall
scale of the permittivity. To the stated action one must add
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the Einstein-Hilbert one for gravity (which we do not dis-
play) and the standard one for the matter. Being interested
in bare black holes we drop the latter.

This is the place to remark on the close similarity (but
not identity) between the framework and the so called
dilatonic sector of the low energy limit of string theory
(dilaton theory) [12–15]. In dilaton theory the equivalent of
the framework’s length scale l must be LP, but in the
framework l is a free parameter to be determined experi-
mentally. The framework was thought to predict [9] that
with l � LP departures from the weak equivalence princi-
ple occur which would have been ruled out by the classic
experiment of Dicke et al. [16]. Olive and Pospelov [17]
investigated a modification of the framework designed to
eliminate this problem (c field couples more strongly to
dark matter than to baryonic). However, more detailed
analysis [10,18] has suggested that equivalence principle
violations in the original framework may actually be sup-
pressed (see Ref. [19] for a differing opinion).

The fact that � variability goes hand in hand with a
modification of Maxwellian electrodynamics means that
the charged black holes in the framework must be distinct
from the Reissner-Nordström (RN) and Kerr-Newman
families of solutions of the Einstein-Maxwell theory. A
family of spherically symmetric charged black holes of the
dilaton theory which supplant the RN black holes has long
been known [12–15] (these dilatonic black holes have
recently been extended to take into account phantom mat-
ter sources [20]). But it was not clear that the dilatonic
black holes are the unique spherical black hole family in
face of � variability. Neither were the coordinates in which
the metric for a dilatonic black hole is usually couched
particularly conducive to visualization of its geometry. We
have thus here derived ab initio, and in standard isotropic
coordinates, the unique geometry and electric field of a
spherical static charged black hole within the variable �
framework. We show them to be those of a dilatonic black
hole (by transforming to the coordinates used by Garfinkle,
Horowitz, and Strominger (GHS) [14]). We elucidate the
geometric, electrodynamic, and thermodynamic properties
of the modified black holes, including some that were
previously unknown.

In Sec. II we collect the equations to be solved for a
static spherical system with electromagnetism as the only
matter source. In Sec. III we delineate the expected fea-
tures expected of a black hole solution, and in light of them
we solve the aforementioned equations to obtain the ge-
neric black hole solution. Section IV provides a metric,
alternative to the isotropic one, which allows exploration of
the black hole interior as well as two other sectors which
may be interpreted, respectively, as a spacelike naked
singularity in asymptotically flat spacetime, and a world
lying between two timelike singularities. In Sec. V we
show that our solution corresponds to the extended dila-
tonic black hole family.

Section VI connects the mass and charge of a varying �
black hole with the formal parameters of the solution.
Sec. VII shows that the framework provides no exact
counterpart to extremal RN black holes, but that nearly
extremal black holes have very special properties. We
discuss the geometry of externally imposed electromag-
netic fields in the background geometry of a nearly ex-
tremal black hole. The thermodynamic functions of a
varying � black hole are found ab initio in Sec. VIII; we
give a trick that considerably simplifies the calculation of
the electric potential. We remark, in agreement with earlier
opinions, that cosmological � growth does not compro-
mise the second law; likewise, it cannot drive a charged
black hole to become a naked singularity. In the appendix
we derive directly the solution and properties of the mag-
netically charged black hole in the framework; they coin-
cide with those one would expect from duality
considerations.
In what follows we take the metric signature as

f�1; 0; 0; 0g and denote the temporal coordinate by t and
the others by xi with i ¼ 1, 2, 3. Greek indices run from 0
to 3.

II. EQUATIONS AND BOUNDARY CONDITIONS

From the action follow the equations relevant for a bare
black hole (it is convenient to subtract the trace part of
Einstein’s equations):

0 ¼ ðe�2cF��Þ;� (3)

c ;�;
� ¼ ��2

2
e�2cF��F

�� (4)

R�� ¼ 2G

c4

�
e�2c

�
F�

�F�� � 1

4
g��F

��F��

�

þ 1

�2
c ;�c ;�

�
: (5)

Equation (3) shows that whereas e�2c is the vacuum
electrical permittivity, e2c plays the role of vacuum mag-
netic permeability. For in 3-d dimensional language appro-
priate to an inertial frame with 4-velocity @=@t and

Cartesian spatial coordinates, it reads ~r � ðe�2c ~EÞ ¼ 0

and ~r� ðe�2c ~BÞ ¼ c�1@ðe�2c ~EÞ=@t. Accordingly, the
speed of light c is constant in the framework; we shall
henceforth set c ¼ 1.
Equations (3)–(5) must be supplemented by suitable

boundary conditions. Asymptotically we must require
that the geometry approach Minkowski’s, and that F�� !
0while c ! c c ¼ const, physically the coeval value of c
in the cosmological model in which our solution is em-
bedded. At the putative black hole horizon H we must
require that all physical quantities, such as the curvature
(Ricci) scalar R ¼ g��R�� as well as F��F

�� be bounded

(otherwiseH would be a singularity). Now from the trace
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of Einstein’s equation (5) we get

R ¼ 2G

�2
ðc ;�c ;�Þ: (6)

Regularity of R at H thus requires that c ;�c ;� be

bounded there.
It is easy to check that the Schwarzschild and Kerr black

holes are exact solutions of Eqs. (3)–(5) with c ¼ const
and F�� ¼ 0. On the other hand, the RN black hole with
c ¼ c c is not a solution because the right-hand side term
of Eq. (4) prevents derivatives of c from vanishing
(F��F

�� � 0 for RN).

We now assume a static spherically symmetric situation.
In isotropic coordinates (fx1; x2; x3g ¼ fr; �; ’g) the metric
is

ds2 ¼ �e2AðrÞdt2 þ e2BðrÞðdr2 þ r2d�2Þ; (7)

where d�2 � d�2 þ sin2�d’2. The boundary conditions
require that AðrÞ ! 0 and BðrÞ ! 0 as r ! 1. Assuming
there is only electric charge means that the only component
of F�� is F01 ¼ Ftr, which will be a function of r only.
Also c ¼ c ðrÞ. Hence Eq. (3) gives

Ftr ¼ Q
e2c�A�3B

r2
; (8)

with Q an integration constant. Asymptotically we expect
to recover a radial Coulomb field. We thus identify Qe2c c

as the electric charge measured a la Gauss from infinity.
From the last result we may compute

F��F�� ¼ �2Q2 e
4c�4B

r4
: (9)

Substituting this in Eq. (4) we have the scalar equation

ðeAþBr2c 0Þ0 ¼ �2Q2 e
2cþA�B

r2
; (10)

where here and henceforth ‘‘ 00000 ‘‘ denotes the derivative
with respect to r.

We now make Eq. (5) explicit:

tt: A00 þ 2A0

r
þ A0B0 þ A02 ¼ H (11)

rr: A00 þ 2B00 þ 2B0

r
� A0B0 þ A02 ¼ H � 2G

�2
c 02

(12)

��: B00 þ A0B0 þ B02 þ A0

r
þ 3B0

r
¼ �H (13)

H � GQ2 e
2c�2B

r4
: (14)

III. SPHERICALLY SYMMETRIC STATIC
SOLUTIONS

A. Excluding non black holes

There are actually several families of solutions of
Eqs. (10)–(13). We proceed to exclude the irrelevant ones.
We define the variables C ¼ Aþ B and D ¼ A� B.

Adding Eqs. (11) and (13) gives

C02 þ C00 þ 3
C0

r
¼ 0; (15)

which can be integrated to

ðr3ðeCÞ0Þ0 ¼ 0: (16)

Integrating once more and demanding that CðrÞ ! 0 as
r ! 1 (asymptotic flatness) leads to

eC ¼ 1� "b2

r2
; (17)

where "b2 stands for an integration constant. We should
thus consider the choices " ¼ 0 or�1. The bwill be taken
as positive (no loss of generality as will become clear in
III B); its dimension is that of length.
Now AðrÞ ¼ 4�e2Br2 is the area of a 2D-section of

space concentric with the origin of the coordinates. With
help of Eq. (17) this may be rewritten as

A ðrÞ ¼ 4�r2
�
1� "b2

r2

�
2
e�2A: (18)

The horizon H must be a null and spherically symmetric
hypersurface, so it corresponds to one of those sections and
is represented by the equation r� rH ¼ 0 with rH a
constant. Further, the Killing vector 	� corresponding to
stationarity is f1; 0; 0; 0g with norm gtt ¼ �e2A. This vec-
tor must become null on the horizon, for otherwise H ’s
generator would not be in a symmetry direction. Hence
e2A ! 0 on H . Thus the last factor in AðrÞ diverges at
H .
However, AðrH Þ cannot be infinite, for if it were so,

AðrÞ would be decreasing with r just outside H . One
consequence would be the existence of a spherically sym-
metric outgoing congruence of null rays, launched from
just outside H , with initially decreasing area, that is with
initial positive convergence. But according to the focusing
theorem, in the presence of fields obeying the null positive
energy condition [which holds for action (2)], such con-
gruence must reach a caustic (singularity) in a finite stretch
of affine parameter. Of course a spherically symmetric
singularity outside H would negate its horizon character.
Thus we must require AðrH Þ<1. We conclude that

the product of the first factors in Eq. (18) must cancel the
divergence of e�2A. Now for " ¼ �1 such product can
vanish only as r ! 1, but the horizon cannot lie at infinity.
Thus there can be no black hole solution for " ¼ �1. We
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proceed to show that assuming " ¼ 0 also fails to produce
black holes.

For " ¼ 0 we must have eC ¼ 1 and so B ¼ �A. The
divergence of A is defused if rH ¼ 0 and if, for r ! 0,
e2A vanishes as r2 or slower. In the second case we would
have A ! 0 as r ! 0. This is unacceptable since a zero
area surface cannot be traversed by a finite sized object, so
that were the horizon to have zero area, the black hole’s
interior could not be accessed by real particles. This does
not correspond to the usual notion of black hole. Thus for
" ¼ 0 only the behavior e2A / r2 as r ! 0 is acceptable.

Let us subtract Eq. (13) from Eq. (11):

A00 þ 2A0

r
¼ GQ2 e

2cþ2A

r4
: (19)

Now since as r ! 0, A	 lnr, we deduce from this equa-
tion that ec must remain bounded and nonvanishing atH
so that jc j cannot blow up there. It follows that rc 0 ! 0 as
r ! 0. This would imply that the left-hand side of Eq. (19)
with A ¼ �B must vanish at the horizon. However, with
e2A / r2 and e2c nonvanishing the right-hand side is non-
vanishing there. The contradiction can be traced to the
assumption that " ¼ 0, which we must thus reject. The
only " which is consistent with black holes is thus " ¼ 1.

B. Black hole solutions

For " ¼ 1 the divergence of A is prevented if rH ¼
b � 0 and e2A vanishes for r ! b as ðr� bÞ2 or slower.
Again exclusion of zero horizon area leaves us only the
first option. In this case by Eq. (17) e�2B is bounded atH .
Thus the requirement of bounded F��F�� tells us, again,

that c must not tend to þ1 as r ! b. Furthermore,
according to Eq. (6) c 0 must remain bounded as r ! b.
This rules out behavior like c ! �1 at H .

Subtracting Eqs. (11) and (13), rewriting A ¼ 1
2 ðCþDÞ

and B ¼ 1
2 ðC�DÞ and replacing the source term by means

of Eq. (10) gives

D0C0 þD00 � C0

r
þ 2

D0

r
¼ 2G

�2r2eC
ðr2eCc 0Þ0: (20)

Using Eq. (17) we get after some algebra

ðD0ðr2 � b2ÞÞ0 � 2b2

r2
¼ 2G

�2
ððr2 � b2Þc 0Þ0; (21)

which equation integrates to

D0ðr2 � b2Þ þ 2b2

r
¼ 2G

�2
ðr2 � b2Þc 0 þ ab; (22)

where a is a new (dimensionless) integration constant. Let
us now introduce the new radial coordinate

	 ¼
Z dr

r2 � b2
¼ 1

2b
ln

�
r� b

rþ b

�
: (23)

We note that 	 ! �1 at H and 	 ! 0 at spatial infinity.
Dividing Eq. (22) by r2 � b2, going over to variable 	, and

performing an additional integration we obtain

Dþ ln

�
1� b2

r2

�
� ab	 ¼ 2G

�2
ðc � c cÞ; (24)

where the new integration constant has been chosen so as
to enforce the asymptotic conditions c ! c c and D ! 0
as r ! þ1.
Now the first two terms in Eq. (24) add up to 2A which,

we have seen, must behave as 2 lnðr� bÞ as r ! b. Since
c is bounded there, the term �ab	 must diverge there as
�2 lnðr� bÞ, which is possible only if a ¼ 4. Thus
Eq. (24) can be written as

2A ¼ 2 ln

�
r� b

rþ b

�
þ 2G

�2
ðc � c cÞ; (25)

so that the only unknown now is c .
We now focus on the scalar equation (10) where we

substitute e2A from the above results. In terms of the new
field variable

u � 2ð1þG=�2Þðc � c cÞ þ 4b	 (26)

(whose range is exactly that of 	) it becomes

d2u

d	2
¼ q2eu; q2 � 2ðGþ �2ÞQ2e2c c : (27)

This is the equation of motion in time 	 of a particle
moving in an exponential potential. Its first integral is

1

2

�
du

d	

�
2 ¼ Eþ q2eu; (28)

where E is the analog of the particle’s conserved energy.
Since c 0 remains bounded as r ! b, dc =d	 ! 0 and

du=d	 ! 4b atH . In addition u ! �1, so the q2eu term
vanishes. Thus the above equation requires that E ¼ 8b2.
Since u ! 0 as r ! þ1, and the above equation has no

turning point, it is clear that u increases with 	. Thus the
integral of the above equation is

Z duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8b2 þ q2eu

p ¼ ffiffiffi
2

p Z
d	 (29)

with positive root.
The integration is done as follows. In terms of the

variable v � u� lnð8b2=q2Þ the integral of Eq. (29) with
the correct boundary conditions included is

4b	 ¼
Z 0

lnðq2=8b2Þ
dv0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ev

0p : (30)

Now substitute ev ¼ sinh2x to obtain the integral of 2cschx
over x which is 2 ln½cschxðcoshx� 1Þ
. Simplifying with
help of identities for hyperbolic functions, and reverting to
variable u one obtains

4b	 ¼ ln�ððq2=8b2ÞeuÞ � ln
; (31)
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�ðzÞ � 1þ 2z�1 � 2z�1
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
; (32)


 � �ðq2=8b2Þ; (33)

where the square root is expressly the positive one.
It follows from Eq. (33) that

ð32b2=q2Þ
 ¼ ð1� 
Þ2; (34)

It is clear from this that 
 cannot be negative. Further,
Eq. (33) shows that 0<
< 1.

To recover c ð	Þ first solve Eq. (32) for z:
z ¼ 4�ðzÞð1��ðzÞÞ�2: (35)

In this last substitute on the left-hand side z ) ðq2=8b2Þeu
and on the right-hand side �ðzÞ ) expð4b	þ ln
Þ, and
invoke Eq. (23) to get

eu ¼ 


�
32b2

q2

��
r� b

rþ b

�
2
�
1� 


�
r� b

rþ b

�
2
��2

: (36)

Now take the logarithm and substitute u here from Eq. (26)
; after canceling a term and taking Eq. (34) into account we
get

c ¼ c c þ �2

Gþ �2
ln

�
1� 


1� 
ðr�b
rþbÞ2

�
: (37)

At this point recall Eq. (25); Exponentiating it and
substituting from our last result gives

e2A ¼
�
r� b

rþ b

�
2
�

1� 


1� 
ðr�b
rþbÞ2

�
2G=ðGþ�2Þ

: (38)

Further, from B ¼ C� A and Eq. (17) follows

e2B ¼
�
1þ b

r

�
4
�
1� 
ðr�b

rþbÞ2
1� 


�
2G=ðGþ�2Þ

: (39)

We have so far supposed that b > 0. Are values b � 0
permitted too? Note that b ¼ 0 amounts to taking " ¼ 0 in
Eq. (17) and that case was already ruled out there. As for
b < 0, suppose we formally switch the sign of b in our
solution (37)–(39). It is then clear that e2B ¼ 0 and e2A ¼
1 on the surface r ¼ jbj, meaning that surface has zero
area and is an infinite blueshift surface. Thus no physical
body could penetrate from r > jbj while photons launched
outwardly from near the surface would reach distant ob-
servers with arbitrary large energy. The object in question
would obviously be pathological. This means b must be
positive, as assumed.

Equations (37)–(39) specify the unique exact solution
for a nonrotating charged black hole in general relativity
with varying � electrodynamics. Several special cases are
of interest.

(i) For Q ! 0, 
 ! 0, and the solution takes the form
of a Schwarzschild metric in isotropic coordinates
with c ¼ c c. As mentioned in Sec. II, the

Schwarzschild solution should be a solution also in
the varying � theory.

(ii) For � ! 0, c ! c c and both exponents in the last
factors in Eqs. (38) and (39) become 2. Thus

e2A ¼
�

r2 � b2

r2 þ b2 þ 2bð1þ

1�
Þr

�
2

(40)

e2B ¼ 1

r4

�
r2 þ b2 þ 2b

�
1þ 


1� 


�
r

�
2
: (41)

This is precisely the RN metric in isotropic coordi-
nates (see, for example, Ref. [21]). Anticipating
Eqs. (57) and (58) we find the parameter correspon-
dence to be b ¼ 1

4 ðRþ � R�Þ and 
 ¼ R�=Rþ with

R� ¼ GM� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2M2 �GQ2e2c c

p
and M the mass.

IV. REGIONS AND SECTORS OF THE SOLUTION

It is worthwhile noting that under the change of variable
r ,! � � b2=r, the metric (7) with Eqs. (38) and (39) goes
over into itself with � everywhere replacing r. Thus the
interval r 2 ð0; bÞ is mapped onto the black hole exterior
r 2 ðb;1Þ with the horizon being a fixed point. Just as in
the case of the RN solution in isotropic coordinates, the
metric (7) with Eqs. (38) and (39) covers the black hole
exterior twice, but does not cover any part of the black hole
interior.
In the RN case this sort of problem is resolved by

passing to Schwarzschild style coordinates (squared radial
coordinate gives area). Such a transformation is intractable
here as it entails solution of a higher order algebraic
equation. Because of this we opt for a slightly different
radial coordinate

$ �
�
r� b

rþ b

�
2
: (42)

This can be inverted to get

r ¼ b
1þ ffiffiffiffiffi

$
p

1� ffiffiffiffiffi
$

p : (43)

Actually a second solution may be obtained by switching
the signs of the radicals. This doubling corresponds to the
two radial coordinates r and b2=r which cover the same
(exterior) region, as discussed earlier in this section.
Transforming metric (7) with Eqs. (38) and (39) from r

to $ we have

ds2 ¼ �$

�
1� 


1� 
$

�
2G=ðGþ�2Þ

dt2 þ 16b2

ð1�$Þ2

�
�
1� 
$

1� 


�
2G=ðGþ�2Þ� d$2

$ð1�$Þ2 þ d�2

�
: (44)

Likewise writing down the field c from Eq. (37) we have
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c ¼ c c þ �2

Gþ �2
ln

�
1� 


1� 
$

�
: (45)

It should be clear that the new coordinates are suitable so
long as 
< 1; the case 
 ! 1 is discussed in Sec. VII.

The black hole exterior is covered by the coordinate
domain $ 2 ð0; 1Þ with $ ¼ 1 being spatial infinity and
$ ¼ 0 being the event horizon (r ¼ b). The change of
coordinate has now put the horizon’s interior in view: it is
the domain $ 2 ð�1; 0Þ wherein the t coordinate be-
comes spacelike and $ timelike.

We identify $ ¼ �1 as the central singularity. The
reasoning is as follows. From Eqs. (44) and (45) and
comparing with Eq. (6) we have

R / c ;�c
;� ¼ $ð1�$4Þð1� 
$Þ�ðð4Gþ2�2Þ=ðGþ�2ÞÞ:

(46)

Thus the scalar curvature diverges for$ ! �1 signifying
that$ ¼ �1 is a true singularity. Since it borders a region
where g$$ < 0 this singularity is spacelike (normal with
negative norm). Further, from the area of a $ ¼ const
surface,

A ð$Þ / ð1� 
$Þ2G=ðGþ�2Þð1�$Þ�2; (47)

we observe that the singularity has vanishing area. Thus
$ ¼ �1 is a central singularity, in all respects like the one
in the Schwarzschild solution, and in contrast to the time-
like singularity of the RN solution.

For � � 0 there is no second (inner or Cauchy) horizon,
such as we have in the RN solution. It is true that gtt can
vanish not only at $ ¼ 0 but, provided �2 <G, also at
$ ¼ 1. However, as clear from Eq. (46), $ ¼ 1 is, like
$ ¼ �1, a point of unbounded curvature, and cannot be a
horizon. Thus we are left with a single horizon, $ ¼ 0.

But then how does the RN solution (for � ¼ 0) manage
to have two horizons? For this Maxwellian electrodynam-
ics case the scalar R vanishes identically since c must be
constant [see Eqs. (37) and (46)]. There is then no longer
any reason for$ ¼ 1 to be a singularity, and thus it might
be a horizon. To see that it is introduce the area radial
coordinate

% ¼ 4b

1� 


1� 
$

1�$
; (48)

for whichAð%Þ ¼ 4�%2 just as with the radial coordinate
in the usual form of Schwarzschild’s metric. In terms of %
we have

gtt ¼ �ðð1� 
Þ%� 4bÞðð1� 
Þ%� 4b
Þ
ð1� 
Þ2%2

: (49)

It is now clear that there two horizons, at % ¼ R�, with
R�=Rþ ¼ 
 and 1

4 ðRþ � R�Þ ¼ b. These last are pre-

cisely the relations quoted for RN at the end of
Sec. III B. In agreement with our previous remarks we
note that, according to Eq. (48), the inner horizon R ¼

R� corresponds to$ ¼ �1. Thus RN is the only charged
spherical black hole sporting an inner horizon. More on
this, in light of GHS, in Sec. V.
Metric (44) describes not only black holes, but also other

denizens of the gravitational world.
In the domain $ 2 ð1; 1=
Þ, t is a timelike coordinate.

The boundary ($ ¼ 1) is spatial infinity as can be seen
because A ! 1 as $ ! 1þ with R vanishing there. And
because R diverges as $ ! 1=
, this second boundary is
also a singularity which is timelike in character because
g$$ > 0 as one approaches it from lower $. It can be
shown from Eq. (47) that dA=d$ < 0 throughout the
domain under discussion: the area of 2-surfaces increases
monotonically with $ as we go from singularity to spatial
infinity. Thus$ 2 ð1; 1=
Þ spans the static asymptotically
flat spacetime around a naked timelike singularity. This
spacetime is obviously distinct from the black hole one.
Finally we study the domain$ 2 ð1=
;1Þ. Metric (44)

is real there only when 2G=ðGþ �2Þ is a rational number
which, when maximally reduced, is either of form ð2n1 þ
1Þ=ð2n2 þ 1Þ or 2n1=ð2n2 þ 1Þ with n1, n2 two integers.
However, in the first case t becomes spacelike in the said
domain while $, � and ’ all become timelike. The met-
ric’s signature is thus unphysical and we must reject any
physical interpretation of this case.
By contrast, for 2G=ðGþ �2Þ ¼ 2n1=ð2n2 þ 1Þ the

metric’s signature is the usual one, with t a timelike coor-
dinate in the whole domain $ 2 ð1=
;1Þ. According to
Eq. (46) the scalar curvature diverges both as $ ! 1=

and $ ! 1 from within the domain, so that the said
boundaries are timelike singularities. The spacelike dis-
tance between them,

‘ ¼ 4b

ð1� 
ÞG=ðGþ�2Þ
Z 1

1=


ð1� 
$ÞG=ðGþ�2Þd$ffiffiffiffiffi
$

p ð1�$Þ2 ; (50)

converges at both limits of the integral, so we may speak of
a finite static spacetime lying between two spherically
symmetric timelike singularities of vanishing area. This
spacetime is evidently not asymptotically flat.
The two singularities are point charges of clearly oppo-

site signs and the same magnitude, since by Gauss’ law the
electric flux lines issuing from one must, by dint of the
symmetry, end up in the other. How come the two charges
do not pull each other together? A simple calculation
shows that a freely falling particle will oscillate between
the two singularities, and find it impossible to approach
either, no matter how large its conserved energy is. Gravity
is thus repulsive in nature in the said region, and this must
be the agent that balances the charges’ attraction.

V. IDENTITY WITH DILATONIC BLACK HOLES

We now demonstrate the identity of our solution with the
spherical dilatonic black holes by comparing with GHS’s
formulation [14]. GHS use a radial coordinateR such that
gtt ¼ �1=gRR. To convert metric (44) to this form we
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obviously have to require

4bd$

ð1�$Þ2 ¼ �dR: (51)

Taking the positive sign so that R increases with $, and
choosing the integration constant (the zero of R) with
hindsight we get

R ¼ 4b

1�$
þ 4b


1� 

: (52)

Inverting this we can put metric (44) in the form

ds2 ¼ ��2dt2 þ dR2

�2

þR2

�
1� 4b


ð1� 
ÞR
�
2G=ðGþ�2Þ

d�2; (53)

with

�2 �
�
1� 4b

ð1� 
ÞR
��
1� 4b


ð1� 
ÞR
�ððG��2Þ=ðGþ�2ÞÞ

:

(54)

We may also translate c from Eq. (45) to the form

c ¼ c c þ �2

Gþ �2
ln

�
1� 4b


ð1� 
ÞR
�
: (55)

Strictly speaking dilaton theory is based on Eqs. (3)–(5)
but with the choice �2 ¼ G [14]. To investigate stability of
the dilatonic black holes with respect to changes of the
parameters of the theory, GHS also considered the case of
generic � (which they denote a) but setting c c ¼ 0. Our
Eqs. (53) and (54) agree in form with theirs; the difference
between their expression for the dilaton field and our
Eq. (55) is immediately understood if we recall that our
c =� corresponds to GHS’s dilaton, and that GHS deal with
the magnetic charge case, c.f. Eq. (A8) of the appendix
below.

GHS remark that the zero of �2 atR ¼ 4b
=ð1� 
Þ is
really a singularity, except in the case � ¼ 0 in which it
marks the inner horizon of the RN geometry. This tallies
with the point made in Sec. IV that$ ¼ �1 is the central
singularity in the generic case. Together with Gibbons and
Maeda [13] and GHS [14] we conclude that the inner
horizon becomes unstable and metamorphoses into a sin-
gularity as � departs from zero.

We shall connect the two black hole parameters to
observables in a different way than did GHS. For this
purpose we revert to metric (7) with Eqs. (38) and (39).

VI. PHYSICAL OBSERVABLES OF BLACK HOLES
WITH VARYING �

How do the black hole parameters b and Q relate to the
observable properties of the black hole for generic �? In
Eq. (8) the radial electric field as r ! 1 is Qe2c c=r2. By
asymptotic flatness the 4�r2 is, in this limit, a good mea-

sure of the area of a sphere concentric with the black hole,
so that we must conclude that the charge, as inferred from
Gauss’ law, isQe2c c . This is the observable charge (as seen
from infinity). We refer the reader to the discussion in
Ref. [9] to the effect that Q, the strength parameter in the
electric current, is rather the conserved charge. In agree-
ment with this, the observed charge at infinity would
undergo evolution in an expanding universe (where c c

would be given by the time dependent solution to the
cosmological problem).
To obtain the observable mass M we expand Eq. (38) in

powers of 1=r:

e2A ¼ 1� 4b

r

�
1þ 2G


ðGþ �2Þð1� 
Þ
�
þOðr�2Þ: (56)

Because asymptotically r is the radius, one can identify the
coefficient of�1=r here as 2GM. Replacing the 
 in terms
of ð1� 
Þ2 by means of Eq. (34), and substituting 
’s
value from Eq. (33) we finally get the observable mass,

M ¼ 2b

�
1

G
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4 ðGþ �2Þb�2Q2e2c c

q
� 1

ðGþ �2Þ
�
; (57)

where, again, the positive square root is chosen.
Solving this expression for b in terms ofM andQ by first

manipulating it into the form of a quadratic in b we get, for
�2 � G,

b ¼ �G�2Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G4M2 � ðG� �2ÞG2Q2e2c c

p
2ðG� �2Þ : (58)

The second solution to the quadratic—corresponding to a
negative signed radical—turns out to be extraneous. It
would be the solution to Eq. (57) if the radical in the latter
were negative: the solution procedure described above
entails squaring that radical, and so adds an unphysical
solution which must be rejected by hand.
By contrast, if �2 ¼ G we naturally get just one solu-

tion:

b ¼ 1
2GM� 1

4Q
2e2c c=M: (59)

To avoid negative b, which would be meaningless for an

horizon, one demands jQj � ffiffiffiffiffiffiffi
2G

p
Me�c c .

Thus for any �2, the ‘‘no hair’’ principle is satisfied: for
any pair fM;Qg there is just one black hole, specified by
Eqs. (38) and (39) with the parameters given by Eq. (58) or
Eq. (59) together with Eq. (33). We do not count 90 ec c as a
black hole parameter since it is set by the cosmological
model in which our solution is to be embedded.
Whether for �2 >G (strongly coupled � variability) or

�2 <G (weakly coupled varying � theory) Eq. (58) gives

nonnegative b only for jQj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gþ �2

p
Me�c c . Thus for

all values of �2, charged black holes can be had only for

jQj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gþ �2

p
Me�c c : (60)
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For fixed M the black hole family is a one-parameter
sequence; the parameter can be either b or Qec c or 
.
Along the sequence b decreases monotonically with
jQjec c from b ¼ GM=2 at Q ¼ 0 towards its zero point

at jQj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gþ �2

p
Me�c c , in the vicinity of which b /

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gþ �2

p � jQjec cÞ. According to Eq. (34) 
 / Q2e2c c

as jQj ! 0 while 
 ! 1 for b ! 0.
From Eq. (39) with r ¼ b we have for the horizon area

A ðbÞ ¼ 64�b2

G@ð1� 
Þ2G=ðGþ�2Þ : (61)

Numerically it is found that AðbÞ decreases monotoni-
cally with jQjec c at fixed M. As evident from Eq. (34),

AðbÞ tends to zero as jQj !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gþ �2

p
Me�c c and 
 ! 1.

As jQj ! 0, AðbÞ tends to its Schwarzschild value
16�G2M2.

VII. NEARLY EXTREMAL BLACK HOLES

In Einstein-Maxwell theory, for which the charged black
holes are RN, the extremal black holes are those for which

Q attains its least upper bound
ffiffiffiffi
G

p
M. In our framework

extremality would correspond to the saturation of inequal-
ity (60). We have just seen that this corresponds to b ! 0
and 
 ! 1 in which limit the horizon area vanishes. But as
argued in Sec. III A, an object with zero horizon area
cannot be regarded as a black hole. Hence, in the frame-
work there is no exactly extremal black hole (for � � 0).
This agrees with our rejection of solutions with " ¼ 0 in
Sec. II; " ¼ 0 is equivalent to b ¼ 0.

In what follows we shall be concerned with the nearly
extremal black holes in the framework. Many of their
properties can be ascertained most easily by developing
the generic formulae in Taylor series in b while setting

ð1� 
Þ ¼ 4
ffiffiffi
2

p
b=q in accordance with Eq. (34). For ex-

ample, in the extremal limit

e2A ¼
�
1þ ðGþ �2ÞM

r

��2G=ðGþ�2Þ þOðbÞ; (62)

e2B ¼ e�2A; (63)

ec ¼ ec c

�
1þ ðGþ �2ÞM

r

���2=ðGþ�2Þ þOðbÞ: (64)

It is interesting that to leading order ec is just some power
of e2A.

One interesting application of the above is as follows. It
is known [22] that Maxwellian electrodynamics in a static
background geometry can be regarded as electrodynamics
in flat spacetime filled with a medium with electric per-
mittivity and magnetic permeability both equal to
1=

ffiffiffiffiffiffiffiffiffiffi�gtt
p

. But we have remarked that varying � electro-

dynamics is related to the Maxwellian one by a vacuum
permitivitty e�2c and a vacuum permeability e2c . By

compounding the two cases we see that the new electro-
dynamics in the curved spacetime represented by metric
(7) functions like the Maxwellian brand in flat spacetime
filled with a medium with permittivity e�A�2c and perme-
ability e�Aþ2c .
For the special case of coupling �2 ¼ G=2, we find from

Eqs. (62) and (64) that the exterior of a nearly extremal
electrically charged black hole has unit effective perme-
ability throughout! This would mean that magnetic lines
produced by distant currents would not be bent by the
hole’s presence (with bending judged with respect to the
flat asymptotic space). And for larger coupling �2 >G=2
the effective permeability would be below unity through-
out space. That would make the black hole exterior like a
diamagnetic medium which tends to expel magnetic fields.
Therefore, for such strong coupling the black hole would
tend to bend external magnetic lines away from itself,
much as a superconductor will push out magnetic flux.
And a sufficiently strong magnetic field would be able to
bodily push the black hole away.
It is easy to see what changes would take place were the

black hole charged magnetically. The basis is explained in
the appendix.

VIII. BLACK HOLE THERMODYNAMICS

The easiest way to calculate the black hole temperature
is via the surface gravity. At fixed point x� ¼ ft; r; 0; 0g has
an acceleration vector a� ¼ f0; ar; 0; 0g with ar ¼
��t

rrðdt=dÞ2. For a diagonal metric like that in Eq. (7)
this gives ar ¼ e�2BA0. Consequently, the invariant accel-
eration is

ffiffiffiffiffiffiffiffiffiffiffiffi
a�a�

p ¼ e�BA0. To these corresponds the local

Unruh temperature TU ¼ ð@=2�Þe�BA0. Redshifting this to
infinity we get the global temperature Tg ¼ eATU. It is

reasonable to take TBH ¼ limr!rH
Tg. Using the specific

metric (7) we get in the limit r ! b

TBH ¼ ð1� 
Þ2G=ðGþ�2Þ @

16�b
: (65)

An independent approach is afforded by the Euclidean
framework. According to Eqs. (7) and (39) the increment
of radial proper length ‘ from the horizon to point r is
given by d‘ ¼ eBdr so that

‘ ¼
Z r

b

�
1þ b

r

�
2
�
1� 
ðr�b

rþbÞ2
1� 


�
G=ðGþ�2Þ

(66)

¼ 4ð1� 
Þ�G=ðGþ�2Þðr� bÞ þOððr� bÞ2Þ: (67)

Solving r� b in terms of ‘ in Eq. (38) gives

e2A ¼ ð1� 
Þ4G=ðGþ�2Þ ‘2

64b2
þOð‘3Þ; (68)

so that the Euclidean metric of the t-r plane takes the form
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ds2Euc ¼ ð1� 
Þ4G=ðGþ�2Þ ‘2

64b2
d2 þ d‘2; (69)

where  is Euclidean ‘‘time.’’ If we wish to interpret this 
as an angle, a conical singularity will occur unless we
require that its period be

� ¼ 2�

�
ð1� 
Þ4G=ðGþ�2Þ ‘2

64b2

��1=2
: (70)

This periodicity is equivalent to a thermal ensemble with
temperature @=�. This last is precisely TBH of Eq. (65).

Yet a third alternative approach is to start with the black
hole entropy as a quarter of the horizon area in units of
Planck’s length squared:

SBH ¼ AðbÞ
4G@

¼ 16�b2

G@ð1� 
Þ2G=ðGþ�2Þ : (71)

Then the black hole temperature is

TBH ¼
�
@SBH
@M

��1

Q
: (72)

To evaluate this we should regard 
 a function of b and b a
function of M. Then

TBH ¼ G@

16�b

ð1� 
Þ2G=ðGþ�2Þ

2ð @b@MÞqð1þ Gb
Gþ�2

@
=@b
1�
 Þ : (73)

The easiest way to obtain @
=@b is to take the logarithm
of Eq. (34) and differentiate the result with respect to b at
fixed q: �

@


@b

�
q
¼ � 2
ð1� 
Þ

bð1þ 
Þ : (74)

Therefore, Eq. (73) takes the new form

TBH ¼ G@

16�b

ð1� 
Þ2G=ðGþ�2Þ

2ð @b@MÞqð1� G
Gþ�2

2

1þ
Þ

: (75)

Harmony of this with Eq. (65) would entail the identity�
@b

@M

�
q
� 1

2
G

�
1� G

Gþ �2

2


1þ 


��1
: (76)

Although we have been unable to establish this analyti-
cally, we have checked it numerically for a large set of
values of Q=M and various �2=G. Thus the Euclidean and
thermodynamic calculations of TBH agree. This, by the
way, demonstrates that the area formula for SBH does not
get corrections from �-variability.

As already mentioned in Sec. VI, SBH as well as AðbÞ
vanish in the limit b ! 0 in which inequality (60) would be
saturated and the black hole would become extremal. This
is in contrast to the situation of the extremal RN black hole
which has nonvanishing area and entropy. The TBH has an
even more curious behavior. As mentioned in Sec. VII the
would be extremal black hole is reached in the limit b ! 0

with ð1� 
Þ 	 b. It may be seen from Eq. (65) that for
�2 <G the temperature vanishes in that limit (just as it
does for the RN black hole), while for �2 >G it diverges.
As already noticed by GHS, for the true dilatonic black
holes (�2 ¼ G) TBH remains finite [14].
In the thermodynamic approach the electric potential of

the black hole, �BH is

�BH ¼ �TBH

�
@SBH

@ðQe2c cÞ
�
M
¼

�
@M

@ðQe2c cÞ
�
SBH

: (77)

since, as discussed in Sec. II, Qe2c c is the charge observ-
able from infinity. Since this leads to a very complicated
computation, we here determine �BH as the value of the
electric potential �At in the limit r ! b (provided At

vanishes asymptotically). The logic for this prescription
is as follows. The Lagrangian for a charged particle with
mass � and (conserved) charge e is

L ¼ ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g��

dx�

d

dx�

d

s
þ eA�

dx�

d
; (78)

where A� is the electromagnetic vector potential: F�� ¼
A�;� � A�;�. In a gauge for which A� is time independent,

the Lagrangian is also t independent, and we have the
conserved canonical momentum

Pt ¼ @L
@ dt

d

¼ �gtt
dt

d
þ eAt: (79)

Since the first term in Pt is minus the particle’s rest plus
kinetic energy, Pt is minus the total energy and�eAt must
be the particle’s electric energy at the corresponding point.
The electric potential of the black hole as measured from
infinity can thus be deduced from the value this energy
takes on as the particle nears the horizon:

�BH ¼ �lim
r!b

e�2c cAt: (80)

Here the factor e�2c c accounts for the fact that the observ-
able charge of the particle is e2c ce.
Turning to Eq. (8) we have

At;r ¼ e2Aþ2BFtr ¼ Q
e2cþA�B

r2
: (81)

Substitution from Eqs. (37)–(39) gives

At;r ¼ Qe2c cðr2 � b2Þ
ðr2 þ b2 þ 2 1þ


1�
 brÞ2
: (82)

This integrates to

At ¼ � Qe2c cr

r2 þ b2 þ 2 1þ

1�
 br

; (83)

which appropriately vanishes as r ! 1. Now taking the
limit r ! b in accordance with Eq. (80) gives
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�BH ¼ Qð1� 
Þ
4b

: (84)

We have checked numerically (for a variety of values of
Q=M and �2=G) that the Maxwell thermodynamic relation

�
@ð1=TBHÞ
@ðQe2c cÞ

�
M
¼ �

�
@ð�BH=TBHÞ

@M

�
Qe2c c

(85)

is indeed obeyed. Further, we recall that as � ! 0 we
should recover the RN result. According to Sec. III B, for
the RN black hole 4b ¼ Rþ � R� and 
 ¼ R�=Rþ,
where R� are the radii of the two horizons in
Schwarzschild-like coordinates. With these our potential
�BH reduces toQ=Rþ, which is the correct RN result. Both
above checks support the correctness of our result for�BH.
Note that �BH depends on ec c through b and 
.

An application of the above is to the issue of whether
black hole thermodynamics can usefully constrain the
cosmological rate of change of �? Davies, Davis, and
Lineware (DDL) [23] argued from the form of the black
hole entropy of a RN black hole that it could not help but
decrease if � is increasing as claimed byWebb’s group [7].
They propose to rule out a cosmologically growing � on
the ground it would violate the generalized second law (if
one ignores the entropy produced by Hawking emission).
DDL discount the possibility that variability of � could
modify charged black hole properties enough to overturn
their conclusion.

But DDL’s implicit assumption that the mass of a black
hole in the expanding universe is constant is incorrect.
Expansion makes the black hole environment time depen-
dent, and there is no reason for mass (Hamiltonian) to be
conserved (even if no radiation flows in or out). The
expansion time scale is generally long compared to the
hole’s dynamical time scale, so the process is adiabatic.
And as pointed out by Fairbairn and Tytgat [24] and
Flambaum [25], it is rather the black hole entropy (or
horizon area) which is unchanged under these circumstan-
ces (adiabatic invariance of the black hole area was estab-
lished earlier by Mayo [26] and by one of us [27]).
Consulting Eq. (61) we see that the black hole parameters

should evolve with b	 ð1� 
ÞG=Gþ�2
. Then Eqs. (33) and

(57) determine the dependence Mðec cÞ, and hence M’s
temporal variation. Similar remarks are made by
Fairbairn and Titgart on the basis of the �2 ¼ G case of
the solution (37)–(39). Of course, once radiation processes
are allowed for, the overall entropy must increase. Thus the
validity of the generalized second law is not endangered by
growth of �.

DDL also warn that systematically growing � will even-
tually bring the black hole to the point of becoming a naked
singularity. In the RN case (and in their language) this

happens when the growing charge reaches
ffiffiffiffi
G

p
M. In our

framework the question is whether inequality (60) will fail

because e�c c decreases as ��1=2. But can the limiting case

of the inequality be reached in view of the adiabatic
invariance of A? According to Eqs. (61) and (33)

A / q4G=ðGþ�2Þb�2ððG��2Þ=ðGþ�2ÞÞ

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2=8b2

p � 1Þ2G=ðGþ�2Þ : (86)

It may be seen that as long as q2 is finite, b cannot approach
zero while keepingA constant. Now the mentioned limit-
ing case is attained as b ! 0 [see discussion following
Eq. (60)]. Hence, the disaster envisaged by DDL cannot
take place while � is finite.
The above ignores the effects of radiation. Suppose the

hole is so small (and hot) that Hawking emission domi-
nates both radiation accretion and M’s growth due to �
evolution, but not hot enough to emit charges, so that Q
remains fixed. Then it seems that bound (60) will even-
tually be surpassed since e�c c decreases. Let us check if
the hole can reach the limiting point of the inequality in a
finite time.
The energy emission rate j _Mj should, on physical

grounds, be proportional to AðbÞTBH
4. We see from

Eqs. (61) and (65) that near the limiting point (b ¼ 0)

_M ¼ �const� ð1� 
Þ6G=ðGþ�2Þb�2

¼ �const� bðð4G��2Þ=ðGþ�2ÞÞ; (87)

where the second equality follows from the fact (Sec. VII)
that near b ¼ 0, b	 1� 
. Using Eq. (76) we convert this
into

db

dt
¼ �const�GðGþ �2Þ

�2
bðð4G�2�2Þ=ðGþ�2ÞÞ: (88)

For �2 � G the integral

Z b

0
b0ðð2�2�4GÞ=ðGþ�2ÞÞdb0 (89)

diverges at the lower limit, which shows that Hawking
radiation cannot bring the hole to the limiting point in a
finite time. But for �2 >G the integral converges. But
before concluding that it takes but a finite time for b to

shrink to zero and for the hole to achieve jQj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gþ �2

p
Me�c c and become a naked singularity even

without help from varying �, we should recall our assump-
tion that no charged particles are emitted. Sufficiently near

b ¼ 0 the temperature diverges as bðG��2Þ=ðGþ�2Þ so before
the dangerous point the hole will begin to emit charged
particles, no matter how massive they are. The consequent
decrease of Q may steer the hole away from the limiting
point.

IX. SUMMARYAND CONCLUSIONS

A spacetime variable � modifies Maxwellian electro-
magnetism. It thus modifies the structure of charged black
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holes in general relativity. Here we have derived ab initio
the unique family of spherical static charged black holes in
the framework of � variability proposed by one of us [9].
This family coincides with a one-parameter extension of
the dilatonic black holes [13–15,24]. In contrast with the
classic Reissner-Nordström black holes, varying� charged
black holes lack an inner horizon; one can take the view
that variability of �, however weak, destabilizes the inner
(Cauchy) horizon to a singularity.

Our charged black hole metric has two additional sec-
tors. One describes the static asymptotically flat spacetime
around a charged naked timelike singularity. The last
sector represents a static finite spacetime lying between
two timelike singularities of zero area and bearing opposite
charges. This last configuration can occur only when the �2

parameter takes on one of an infinite set of rational values.
Charged black holes in varying � theory obey the ‘‘no

hair’’ principle; they are fully determined by the mass M
and conserved charge Q of the black hole (and by the
asymptotic value of the � field, which is nothing but the
coeval cosmological value of �). The allowed range of the
charge-to-mass ratioQ=M is, however, somewhat different
from that in the Reissner-Nordström case, and depends
both on the �2 parameter and on the cosmological �.
The area of the horizon of the geometry tends to zero at
the largest allowed jQj=M, and this limiting case of the
solution is not a black hole. Nearly extremal black holes
have the property that the� field is a power of the square of
the time Killing vector. For the special value �2 ¼ G=2, an
externally sourced magnetic field will be uniform in such a
black hole’s vicinity (as judged from infinity).

We have here calculated anew the black hole thermody-
namic functions in the face of varying �. In particular, we
present a trick which enables an otherwise intricate calcu-
lation of the electric potential to be carried out almost
trivially. The � dependence of the black hole thermody-
namic functions makes it tempting to suppose that black
hole thermodynamics may restrict � variability in the
expanding universe. Such a claim was urged by Davies,
Davis, and Lineware [23] because the black hole entropy
for the Reissner-Nordström black hole would seem to
decrease as � increases. We reiterate, with Fairbairn and
Tytgat [24] and with Flambaum [25], that in view of
adiabatic invariance of the black hole entropy, the gener-
alized second law is not endangered by � growth in cos-
mology. Adiabatic invariance is also sufficient to prevent a
charged black hole from evolving, due to cosmological �
growth, into the extremal state of vanishing horizon area.
However, we find that when �2 >G, even in the absence of
cosmological � growth, Hawking radiation of neutral
particles tends to drive a charged black hole to the vanish-
ing horizon area state in a finite time. However, it seems
likely that late emission of charged particles due to a rising
black hole temperature will prevent violation of cosmic
censorship.
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APPENDIX: MAGNETIC BLACK HOLES

The duality principle informs us that there should also
exist purely magnetically charged black holes in the theory
of varying �. We again restrict attention to static spheri-
cally symmetric solutions. In this case we expect the only
nonvanishing component of the electromagnetic field ten-
sor to be F�’, which corresponds to a radial magnetic field.

In terms of dual fields this is �Ftr, so that instead of Eq. (3)
we have here

ðr2eAþ3B�FtrÞ0 ¼ 0: (A1)

By analogy with Eq. (8) we have the solution

F�’ ¼ �eAþ3Br2 sin��Ftr ¼ P sin� (A2)

where P is an integration constant, the magnetic monopole.
Forming F��F�� we now find, instead of Eq. (10),

ðeAþBr2c 0Þ0 ¼ ��2P2 e
�2cþA�B

r2
: (A3)

And calculating anew the electromagnetic stress-energy
tensor we find the Einstein equations

tt: A00 þ 2A0

r
þ A0B0 þ A02 ¼ K (A4)

rr: A00 þ 2B00 þ 2B0

r
� A0B0 þ A02 ¼ K � 2G

�2
c 02 (A5)

��: B00 þ A0B0 þ B02 þ A0

r
þ 3B0

r
¼ �K (A6)

K � GP2 e
�2c�2B

r4
: (A7)

Comparing Eqs. (A3)–(A6) with Eqs. (10)–(13) we
notice that they differ only by the replacement Q ,! P
and c ,! �c . Accordingly we can immediately write
down the solution for the magnetic black hole: the metric
is still given by Eqs. (38) and (39) withM and b defined by
Eqs. (57) and (58) or Eq. (59) with Q ,! P, while the
scalar field takes the form

c ¼ c c � �2

Gþ �2
ln

�
1� 


1� 
ðr�b
rþbÞ2

�
; (A8)

where we have turned around again the sign of c c since it
is by definition the asymptotic value of the scalar field. By
the same token, the sign of c c is to be retained unchanged
in places like Eq. (27), (45), and (55). The discussion in
Secs. V, VI, VII, and VIII can be taken over almost
verbatim: it is now jPj, the conserved monopole, that is
restricted by Eq. (60), and the observable magnetic mono-
pole is e�2c cP.
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